A higher order compact scheme for the nonlinear advection diffusion processes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

A Hybridized DG/Mixed Scheme for Nonlinear Advection-Diffusion Systems, Including the Compressible Navier-Stokes Equations

We present a novel discretization method for nonlinear convection-diffusion equations and, in particular, for the compressible Navier-Stokes equations. The method is based on a Discontinuous Galerkin (DG) discretization for convection terms, and a mixed method using H(div) spaces for the diffusive terms. Furthermore, hybridization is used to reduce the number of globally coupled degrees of free...

متن کامل

A Third-Order Scheme for Numerical Fluxes to Guarantee Non-Negative Coefficients for Advection-Diffusion Equations

According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. In case of advection-diffusion equations, so far there have been not found stable schemes with positive difference coefficients in a family of numerical sch...

متن کامل

Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term

In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Fina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Institute of Mathematics and Mechanics,National Academy of Sciences of Azerbaijan

سال: 2019

ISSN: 2409-4986

DOI: 10.29228/proc.10